“植物依靠光合作用固定碳素,依靠根吸收氮素,这两个过程紧密相连,对作物产量的形成至关重要。”周文彬说,如何在提高作物光合作用效率的同时,提高氮素利用效率、促进作物碳氮代谢协同,从而实现作物高产高效,是当前农业科学领域重要的科学问题之一。为此,科学家对比研究了产量比水稻、小麦高的玉米等作物。
118个候选因子:站在前人的肩膀上
然而,此前研究表明,全球约24%~39%的玉米、水稻、小麦以及大豆种植区域单产处于停滞不前,甚至下降的态势。
“其实我们筛选到的是一个明星基因。”周文彬告诉记者,转录因子OsDREB1C在拟南芥等模式植物中备受关注,但此前并没有科学家关注它与粮食作物产量的关系。
结果显示,在水稻品种“日本晴”中过表达OsDREB1C基因,比对照组产量提高41.3%~68.3%;在南方栽培稻品种“秀水134”中过表达该基因,较对照组产量提高30.1%~41.6%。
“在不施用氮肥条件下,OsDREB1C基因过表达植株的产量已达到甚至高于对照组在施用氮肥条件下的产量水平,实现了‘减氮高产'。”李霞说。
“该基因的增产幅度特别大,这是很少见的。”美国国家科学院院士朱健康希望,未来能把这个基因应用在生产上,让育种家和农民都能用到它,真正在田里看到这么高产的水稻或者其他作物。
《科学》论文评审专家认为,该团队出色地完成了大量的田间试验工作,包括不同作物、不同地点的多年田间试验,呈现了全面而可靠的试验结果。如果将其应用到实际农业生产中,必将进一步推动水稻等作物实现可持续集约化生产。
结果发现,该基因在小麦中同样具有高产早熟的功能,可让小麦田间增产17.2%~22.6%,早熟3~6天。
中国科学院院士杨维才认为,这个基因的发现无疑具有重要的科学价值和应用前景,其应用将实现对水稻和其他作物的改良,并为保障国家粮食安全、生态安全作出更大贡献。
同时,近年来作物单产增长已进入一个平台期,受气候变化影响,有的地区甚至出现了单产下降的趋势。
相关论文信息:
文 | 《中国科学报》记者 李晨
2014年,发表在《自然-生物技术》的研究鉴定到了118个玉米和水稻共有的与光合作用过程密切相关的转录因子。“我们站在前人的肩膀上,以这118个转录因子为切入点,逐一分析它们在水稻中光照条件和低氮条件下的诱导表达情况,鉴定到一个同时受光和低氮调控的转录因子OsDREB1C。”周文彬说。
然而,OsDREB1C基因的“能力”并没有止步于此--它还可以促进水稻早开花、早结实、提前收获。魏少博介绍,在北京,过表达OsDREB1C基因的水稻“日本晴”可较对照组提前抽穗13~19天;在杭州,过表达OsDREB1C基因可让“秀水134”抽穗期至少提前2天。
过表达OsDREB1C基因的“日本晴”水稻高产早熟。受访者供图
为了验证这个基因的功能,此后,该团队进行了不同作物、不同地点的多年田间试验。
不过,周文彬强调,从实验室到农田,还有很多工作要做。下一步,该团队将深入开展该基因在主要粮食作物(包括玉米、大豆)中的功能和作用机制研究,并评估其抗逆性及田间产量性状,探索高产早熟新品种大田生产模式,加快突破制约作物单产水平快速提升的瓶颈。
文章来源:《大豆科学》 网址: http://www.ddkxzz.cn/zonghexinwen/2022/0729/793.html